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Abstract A local formulation for determination of
excess chemical potential is derived out by applying an
assumption of linear dependence of correlation func-
tion and bridge function on the charging parameter to
the Kirkwood charging formula and scaling the bridge
function, the scaling parameter is specified by a Gibbs–
Duhem relation. The local formulation for the excess
chemical potential only requires the correlation function
and bridge function of the investigated state as input
and is therefore free of an unwieldy thermodynamic
integration. A comprehensive comparison between the
presently calculated thermodynamic quantities for a
Lennard–Jones (LJ) fluid including two key quantities,
i.e. the excess chemical potential and excess entropy,
corresponding simulation data available in literature,
and corresponding calculated results by several other
global and local formulations, indicates that the pres-
ent formulation is the only one capable of predicting
locally and excellently all of the thermodynamic proper-
ties of the LJ fluid. The GCMC simulation is carried out
for a core-softened potential fluid and the LJ fluid near
critical state and at subcritical state near the gas–liquid
coexistence line to obtain the excess chemical potential
which is also in excellent agreement with the theoreti-
cal prediction from the present formalism; this indicates
that the present formalism is of general interest in fluid
statistical mechanics and applicable to parameter space
covering over the entire phase diagram.
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1 Introduction

Integral equation theory (IET) in classical statistical
mechanics is a powerful theoretical tool for calculation
of correlation functions of fluid systems [1–6]. Since the
introduction of self-consistent bridge function approxi-
mation such as the well-known RY approximation due
to Rogers and Young [7] in 1984, accuracy of IET has
arrived at such a level that a radial distribution func-
tion (RDF) denoted by g(r) predicted by the IET can be
equivalent with the simulation results within numerical
accuracy of the latter. In principle, thermodynamic prop-
erties also can be predicted by the IET, but an unwieldy
thermodynamic integration has to be incurred. Espe-
cially, when one considers the subcritical temperature
case in which the isothermal thermodynamic integra-
tion path would cross an instability region of the phase
diagram, one will have to resort to a combination of both
the compressibility route and the energy route to reach
points of the liquid region [8], this only increases the
calculational task and difficulty for coding. Therefore, it
is very desirable to calculate the thermodynamic prop-
erties avoiding the thermodynamic integration. Among
all the thermodynamic properties, calculation of excess
chemical potential βµex is of paramount importance.
Upon acquirement of the βµex, all of other thermody-
namic properties can be easily obtained locally. Here,
the word “local” means that one can calculate the desir-
able quantities with only the correlation function of the
considered state as input, and avoid the unwieldy ther-
modynamic integration.

The present report is organized as follows. In Sect. 2,
the present local formulation for calculation of the βµex

is derived out theoretically, then the formulation is
employed to calculate locally the βµex and excess
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entropy Sex of a Lennard–Jones (LJ) fluid in combina-
tion with the framework of a modified hypernetted chain
(MHNC) approximation. To evaluate the validity of the
present formulation, the present calculational results are
compared with those based on several previous formu-
lations and computer simulation. In the same Sect. 2, we
also carry out Grand Canonical Ensemble Monte Car-
lo (GCEMC) simulations for the LJ fluid and a core-
softened potenial fluid at constant chemical potential µ,
volume V, and temperature T, and provide new simula-
tion data for the βµex in the “dangerous” regions of the
bulk phase diagram to give a stringent test of the pres-
ent formulation. To show the practical effectiveness, the
present local formulation is employed to construct the
liquid–gas phase diagram of the LJ fluid and compared
with the computer simulation results available in litera-
ture. Finally, we conclude the present findings in Sect. 3.

2 Local formulation for the excess chemical potential
and test

The fluid IET is based on an exact Ornstein–Zernike
(OZ) integral equation (IE) [1–6]:

h(r) − C(2)
0 (r) = ρ

∫
dr1h(r1)C

(2)
0 (|r − r1|), (1)

to determine the total correlation function h(r) =
[g(r) − 1], the second-order direct correlation function
(DCF) C(2)

0 (r), and the indirect correlation function
γ (r) = [h(r) − C(2)

0 (r)], the OZ IE has to be solved
together with a closure relation written in a formally
exact expression:

g(r) = exp {−βu(r) + γ + B(r)} (2)

where β = 1
kBT , kB being Boltzmann constant, and T

being absolute temperature, ρ being particle number
density and u(r) is the interparticle potential function.
It should be pointed out that only the separation argu-
ment r appears in the above quantities, but these quan-
tities also depend on other arguments which we ignore
for convenience and simplicity. However, some of these
arguments will be written out explicitly when needed.

Equation (2) depends on a so-called bridge function
B(r) which is a sum of “bridge” or “elementary” graphs
in the diagrammatic analysis of the two-point functions.
Although there exists a formal relationship between
B(r) and g(r), it involves an infinite sum of highly con-
nected diagrams [1–6] which render its utilization in
practical calculation impossible. Therefore, the bridge
function has to be approximated to find a concrete solu-
tion of the OZ IE.

The Gibbs–Duhem (GD) relation that links the βµex

to the pressure P via the fluctuation route, provides the
following expression for the βµex:

βµex = −4π

ρ∫

0

dρ′
∫

drr2C(2)
0

(
r; ρ′). (3)

Obviously, the GD relation is concerned with a thermo-
dynamic integration along an isothermal path.

In addition, there also exist two other independent
routes from correlation function knowledge to the βµex.
Namely, the classical formula of Kirkwood [9] on the one
hand, and that based on the activity [10] on the other
hand. In order to implement a numerical evaluation, the
former demands, for aim of integration, numerous cal-
culations of the pair correlation functions with different
value of the charging parameter, while the latter is more
straightforward, but its local formulation is an approx-
imation in terms of the bridge function. Nevertheless,
Kjellander and Sarman [11], and later Lee [12] derived
out a direct expression within Kirkwood’s formula which
is also convenient and local.

The classical formula of Kirkwood is given by

βµex = ρ

1∫

0

dλ

∫
dr

∂βu(r, λ)

∂λ
g(r, λ), (4)

where λ is the charging (coupling) parameter. An exact
expression equivalent to Eq. (4) was found by Kjellander
and Sarman [11], and Lee [12],

βµex = ρ

∝∫

0

(
γ (r) − h(r) + B(r) + 1

2
h(r)γ (r)

+
1∫

0

dλh(r, λ)
∂B(r, λ)

∂λ

)
4πr2dr. (5)

If one assumes a linear dependence of the correlation
function h(r, λ) on λ, namely

h(r, λ) = λh(r), (6)

one obtains

βµex = ρ

∝∫

0

(
γ (r) − h(r) + B(r) + 1

2
h(r)γ (r)

+ h(r)

1∫

0

dλλ
∂B(r, λ)

∂λ

)
4πr2dr, (7)

if one further assumes an unique functionality of the
bridge function, i.e. B(r) = B(γ ∗(r)), a path dependence
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may be introduced and Eq. (7) can be rewritten as

βµex =ρ

∝∫

0

⎛
⎜⎝γ (r) − h(r) + B(r) + 1

2
h(r)γ (r) + h(r)B(r)

− h(r)
γ ∗(r)

γ ∗(r)∫

−βu2(r)

B
(
γ ′)dγ ′

⎞
⎟⎠ 4πr2dr, (8)

where γ ∗(r) is a renormalized γ (r) [12], and −βu2(r) is
the renormalized potential. Equation (8) is exactly the
formula used by Lee [12].

Kiselyov and Martynov [13] proposed another local
formulation for the βµex,

βµex = ρ

∝∫

0

(
γ (r) − h(r) + B(r)

+1
2

h(r)
(
γ (r) + B(r) + B1(r)

))
4πr2dr.

(9)

It was shown that the B1(r) is an infinite series of irre-
ducible diagrams, but unfortunately cannot be summed
up exactly. Little is known about it, excepted that at
low densities B1(r) = 1

3 B(r) [14], at high densities, the
relation between B1(r) and B(r) remains still unknown.
In Refs. [14,15], the equality B1(r) = 1

3 B(r) is used in
Eq. (9) to calculate the µex of the LJ fluid, i.e.

βµex = ρ

∝∫

0

(
γ (r) − h(r) + B(r)

+1
2

h(r)
(

γ (r) + 4
3

B(r)
))

4πr2dr. (9′)

It should be mentioned that the expression Eq. (9′) is
more convenient than the former one given by Eq. (8)
since it does not require any analytic expression of B(r)
as a function of γ (r) or γ ∗(r). It is interesting to point
out that these two expressions are based on two indepen-
dent routes. The former is derived from the Kirkwood’s
formula in which the charging parameter accounts for
an insertion of a particle in the fluid, the latter is based
on the activity in which βµex is expressed in terms of the
one-particle DCF.

Besides the global formulation Eq. (3), two local for-
mulations Eqs. (8) and (9′), there also exists a variant
[16] of the Eqs. (9, 9′):

βµex =ρ

∝∫

0

(
γ (r) − h(r) + B(r) + 1

2
h(r)

×(
γ (r)+B(r)+α

(
ρ∗, T∗)B(r)

))
4πr2dr,

(9′′)

where α(ρ∗, T∗) in Eq. (9′′) is determined by a sum rule
Eq. (12) as will be detailed later.

Now we will derive out a new local formulation start-
ing from Eq. (5). We assume that both the correlation
function h(r, λ) and bridge function B(r, λ) depend on
linearly λ, namely, the equality B(r, λ) = λB(r) and
Eq. (6) hold; then one obtains

βµex = ρ

∝∫

0

(
γ (r) − h(r) + B(r)

+1
2

h(r)(γ (r) + B(r))
)

4πr2dr. (10)

Considering that the βµex depends explicitly on the
bridge function B(r) and it has been shown that its cal-
culation is mainly affected by the contribution of B(r)
inside the core (98% in the case of hard sphere fluid
[12]). That is the reason why a highly reliable bridge
function is necessary to calculate accurately the βµex.
On the other hand, for case of fluid whose interparticle
potential includes a strongly repulsive core, an approx-
imation for the bridge function, even if it can predict
accurately the RDF, maybe quantitatively very inaccu-
rate, or even qualitatively incorrect inside the core. Since
the RDF does not depend on the bridge function inside
the core, only depends on the bridge function outside the
core. Therefore, one cannot judge the performance of a
bridge function approximation only by the predicted
RDF. To compensate for the inaccuracy of the bridge
function approximation inside the core, we suggest scal-
ing the bridge function in Eq. (10), i.e. we use following
equality instead of Eq. (10)

βµex = ρ

∝∫

0

(
γ (r) − h(r) + α

(
ρ∗, T∗)B(r)

+1
2

h(r)
(
γ (r) + α

(
ρ∗, T∗)B(r)

))
4πr2dr (11)

where ρ∗ = ρσ 3, T∗ = kBT
ε

are, respectively, reduced
density and reduced temperature of the bulk fluid, ε

being energy parameter and σ being size parameter of
the interaction potential as will be pointed out later.
Upon acquirement of the correlation functions, the scal-
ing parameter α(ρ∗, T∗) is determined by the sum rule:
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β
∂µex

∂ρ

∣∣∣∣
ρ∗,T∗

= −4π

∫
drr2C(2)

0 (r; ρ). (12)

Equation (12) is the differential form of the GD relation,
Eq. (3).

The derivative associated with Eq. (12) is calculated
by finite-difference method and ignoring the density
dependence of the scaling parameter α(ρ∗, T∗),

β
∂µex

∂ρ

∣∣∣∣
ρ∗ ,T∗

= βµex(ρ∗ + 
ρ∗, T∗, α(ρ∗, T∗)) − βµex(ρ∗, T∗, α(ρ∗, T∗))

ρ

,

(13)

where 
ρ∗ is a small density increment (usually 10−4 in
ρ∗ units).

To test the validity of the present local formulation,
we will employ the Eq. (11) to calculate the thermo-
dynamic properties of the LJ fluid which is extensively
investigated by theories and simulation, this enables one
to give a comprehensive comparison between the pres-
ent Eq. (11), other published local formulations,
Eqs. (8, 9′, 9′′), and a global formulation, Eq. (3). To ini-
tiate the numerical implementation of Eq. (11), one has
to import correlation function and bridge function of the
LJ fluid; we will obtain these quantities in the framework
of the MHNC approximation [17,18] for the OZ IE. In
the MHNC approximation [17,18], B(r) = Bhs(r; de),
here, Bhs(r; σHS) is the hard sphere bridge function,
de and σHS are, respectively, an effective hard sphere
diameter and the hard sphere diameter. In the pres-
ent investigation, we employ the following approximate
hard sphere bridge function given by

Bhs(r; σHS) = ln (y(r)) + 1 + Chs(r) r < σHS

ln (g(r)) + Chs(r) + 1 − g(r) r > σHS,

(14)

where, ln (y(r))—logarithm of the hard sphere cavity
correlation function, is given by a simulation data-fit-
ting formula due to Ballance and Speedy [19]; Chs(r),
the second order DCF of hard sphere fluid, is given by
simulation data-fitting formula due to Groot, van der
Eerden, and Faber [20]; Finally, g(r) is given by simu-
lation data-fitting formula due to Verlet and Weis [21].
Therefore, we call the Eq. (14) GvEF–BS–VW bridge
function.

The effective hard sphere diameter de associated with
the MHNC procedure is specified by enforcing a local
consistency condition, i.e. the reduced isothermal com-
pressibility from the virial route and the fluctuation
route should be equal. The virial reduced isothermal
compressibility χ0

χv
T

is calculated by the finite-difference

method, usually one assumes an equal value of the de at

the density ρ∗ and ρ∗ +dρ∗, where dρ∗ is a conveniently
small density increment (typically 10−4 in ρ∗ units). Thus
one obtains

χ0

χv
T

=β
∂Pv

∂ρ
= βPv(ρ∗ + dρ∗, T∗, de) − βPv(ρ∗, T∗, de)

dρ
,

(15)

the virial pressure Pv is calculated from the virial route

βPv

ρ
= 1 − βρ

6

∝∫

0

dr4πr3 du(r)
dr

g(r). (16)

The reduced isothermal compressibility χ0
χc

T
throughout

the fluctuation route reads

χ0

χc
T

= β
∂Pc

∂ρ
= 1 − ρ

∫
drC(2)

0 (r; ρ), (17)

where χ0 = (ρkBT)−1 is the ideal gas compressibility.
Equality between β ∂Pv

∂ρb
and β ∂Pc

∂ρ
provides an equation

for determination of the de.
The LJ potential is given by

u(r) = 4ε

[( r
σ

)−12 −
( r
σ

)−6
]

. (18)

Upon acquirement of the correlation functions, one
can easily obtain the βµex by Eq. (11), virial pressure Pv

by Eq. (16), excess internal energy per particle βUex

N by
Eq. (19), and excess entropy Sex by Eq. (20),

βUex

N
= 2πρ

∫
βu(r)g(r)r2dr (19)

Sex = βP
ρ

− 1 + βUex

N
− βµex (20)

The present calculational results together with those
theoretical results from Ref. [15] based on Eqs. (3) and
(9′), respectively, are presented in Table 1 for two sub-
critical temperature cases. It can be easily concluded
that for the prediction of the Sex, the local formulation
—Eq. (8)—almost fail completely (see Table 1 of
Ref. [15]), the Eqs. (3) and (9′) improve on the Eq. (8)
greatly, but are still very unsatisfactory when the density
becomes higher. For example, for case of ρ∗ = 0.87 and
T∗ = 0.75, the percent relative errors (PRE) for the Sex

of Eq. (3), (8), and (9′) are, respectively, 11.257, 81.334,
and 15.674, while the PRE of the present Eq. (11) is
only 3.178. For case of Table 1, both the present OZ ITE
based on the MHNC–GvEF–BS–VW bridge function
and that based on the VM bridge function [15] perform
very well for the excess internal energy. But when the
compressibility factor Z = βP

ρ
is very low, the two PREs

for the Z is significant. However, the absolute error is
not significant. Another reason explaining the signifi-
cant PREs of the present OZ IET and that in Ref. [15]
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Table 1 Excess internal energy Uex/UexNε Nε, compressibility factor Z = βPv/βPvρ ρ, and excess entropy Sex of the Lennard–Jones
(LJ) fluid calculated with the present MHNC–GvEF–BS–VW bridge function—Eq. (11)

T∗ ρ∗ Uex/Nε UexJC/
Nε Uex

MD

/
Nε Z ZJC ZMD Sex Sex,JC,KM Sex,JC,GD Sex,HV

1.15 0.5 −3.4788 −3.4519 −3.499a −0.07723 −0.2046 −1.4726 −1.4778 −1.4778 −1.457
1.15 0.6 −4.1121 −4.1093 −4.130a 0.05099 0.0274 −1.8217 −1.8530 −1.9213 −1.815
1.15 0.65 −4.4477 −4.4461 −4.458a 0.2734 0.2619 −2.0356 −2.0929 −2.1955 −2.037
1.15 0.75 −5.1009 −5.1001 −5.108b 1.1666 1.1721 1.161b −2.5273 −2.6565 −2.7759 −2.556
1.15 0.85 −5.6600 −5.6666 −5.665b 2.8946 2.8675 2.865b −3.1489 −3.3462 −3.3920 −3.150
1.15 0.92 −5.9407 −5.9678 −5.953b 4.7994 4.6702 4.719b −3.6323 −3.9193 −3.8318 −3.625
1.15 0.93 −5.9752 −6.0023 −5.986b 5.1050 4.9768 5.022b −3.7495 −4.0081 −3.8943 −3.671
1.15 0.94 −6.0058 −6.0342 −6.013b 5.4307 5.2967 5.364b −3.8692 −4.0988 −3.9564 −3.739
1.15 0.95 −6.0324 −6.0637 −6.039b 5.7776 5.6303 5.711b −3.9640 −4.1912 −4.0182 −3.810
1.15 0.96 −6.0556 −6.0904 −6.063b 6.1417 5.9779 6.069b −4.0733 −4.2854 −4.0795 −3.882
1.15 0.97 −6.0757 −6.1144 −6.082b 6.5525 6.3400 6.450b −4.1319 −4.3817 −4.1404 −3.953
0.75 0.7 −5.0540 −5.0457 −5.076a −1.6398 −1.6179 −0.812a −2.6003 −2.7760 −2.7760 −2.595
0.75 0.8 −5.7618 −5.7530 −5.772a −0.4079 −0.3555 −0.294a −3.2234 −3.5719 −3.5430 −3.226
0.75 0.84 −6.0209 −6.0152 −6.024b 0.4749 0.4973 0.441b −3.5435 −3.9389 −3.8465 −3.441
0.75 0.85 −6.0821 −6.0777 −6.084b 0.7367 0.7466 0.692b −3.6311 −4.0351 −3.9217 −3.516
0.75 0.86 −6.1419 −6.1389 −6.134b 1.0129 1.0112 0.952b −3.7352 −4.1330 −3.9967 −3.581
0.75 0.87 −6.1976 −6.1984 −6.192b 1.3288 1.2918 1.244b −3.7753 −4.2325 −4.0709 −3.659

The superscript JC denotes theoretical results from Ref. [15]; KM and GD have the same meaning as in Ref. [15]; absence of the
superscript and subscript denotes the present results; superscript HV denotes simulation data from Hansen and Verlet [25]
aSubscript MD denotes molecular dynamics simulation data from Ref. [23]
bSubscript MD denotes molecular dynamics simulation data from Ref. [24]

is due to inaccuracy of the simulational Z. Taking the
case of ρ∗ = 0.7 and T∗ = 0.75 as an example, the pres-
ent Eq. (11) predicts the Sex with a PRE of only 0.2042,
the excess internal energy with a PRE of 0.4334; The
present Eq. (11) predicts βµex = −6.7768, the accurate
simulation-fitting EOS in Ref. [22] predicts βµex =
−6.7422; therefore, the PRE for the excess chemical
potential is also only 0.5132. According to Eq. (20), the
Z should be −1.6386, in very good agreement with the
present virial compressibility factor: −1.6383. There-
fore, one can suspect that there exist large error associ-
ated with the molecular dynamic simulation data [23,24]
for the Z when the absolute value of the Z is low.

In Table 2, the present predictions for the thermo-
dynamic properties of LJ fluid are presented together
with the corresponding simulation data [22] and that
from an OZ IET in Ref. [26], where the calculation of
the βµex is based on Eq. (8). It can be seen out clearly
that for predictions of the βµex, the maximum PRE in
Ref. [26] is 12 for case of a combination of ρ∗ = 0.95 and
T∗ = 1.35, the maximum PRE of the OZ IET in Ref. [14]
is 16.9154 (calculated from the data collected in Table 1
of Ref. [26]) for case of a combination of ρ∗ = 0.4 and
T∗ = 2.74, while for the present MHNC–GvEF–BS–
VW bridge function and Eq. (11), the maximum PRE is
only 2.77 for case of a combination of ρ∗ = 0.95 and
T∗ = 1.35. It should be noted that in Ref. [14] the
calculation of the βµex is based on Eq. (9′). For other
thermodynamic properties such as the βUex

N and

compressibility factor Z, the present MHNC-GvEF-BS-
VW bridge function also performs better than that in
Refs. [14,26], but the difference of the performance is
not so significant as displayed in the present Table 2 for
the prediction of the βµex. Therefore, one can confi-
dently conclude that the present Eq. (11) is largely supe-
rior to Eqs. (8) and (9′).

One may refute that the excellent performance of the
present Eq. (11) is mainly due to the scaling parameter
α(ρ∗, T∗). To indicate that the excellent performance of
Eq. (11) is mainly due to a correct inherent structure
of Eq. (11), in Table 3 we compare, not only the scaling
parameter α(ρ∗, T∗), but also the present predictions
for the βµex and Sex of the LJ fluid with the corre-
sponding prediction from Ref. [16], where the Eq. (9′′)
is employed for calculation of the βµex and the required
correlation functions are also from an OZ IET but based
on a new bridge function approximation [16]. From
Table 3, one can estimate that the maximum PRE for the
βµex is 12.4528 for Eq. (9′′), but only 2.22 for the pres-
ent Eq. (11), the maximum PRE for the Sex is 6.3927 for
Eq. (9′′), but only 1.7146 for the present Eq. (11). Con-
sidering that both the present Eq. (11) and Eq. (9′′) are
concerned with the scaling parameter, and the scaling
parameter is specified by the same sum rule, the signifi-
cantly higher accuracy of the present Eq. (11) compared
with the Eq. (9′′) confidently proves that the Eq. (11)
is surely structured far more soundly than Eq. (9′′). It
should be pointed out that although the present MHNC
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Table 2 Thermodynamic properties of the LJ fluid at several supercritical temperatures

sρ∗ −βUex −βUex,bb −βUex,s Z Zbb Zs βµex βµex,bb βµex,s

T∗ = 5

0.1 0.1022 0.102 0.101 1.0662 1.066 1.069 0.1246 0.125 0.129
0.3 0.2984 0.298 0.299 1.3243 1.318 1.327 0.5541 0.553 0.562
0.5 0.4706 0.471 0.475 1.8711 1.863 1.860 1.3769 1.370 1.371
0.7 0.5774 0.580 0.581 2.9570 2.940 2.932 2.8976 2.809 2.883
0.9 0.5370 0.540 0.538 4.9730 4.950 4.930 5.5967 5.268 5.582
1.1 0.2214 0.226 0.225 8.4763 8.446 8.418 10.2166 9.366 10.167
1.2 −0.090233 −0.091 −0.077 10.9963 10.990 10.993 13.5545 12.350 13.432

T∗ = 2.74

0.1 0.2227 0.222 0.222 0.9738 0.974 0.977 −0.06128 −0.061 −0.056
0.2 0.4396 0.439 0.439 0.9882 0.990 0.993 −0.06315 −0.058 −0.053
0.3 0.6523 0.652 0.653 1.0574 1.050 1.060 0.01281 0.018 0.022
0.4 0.8620 0.862 0.862 1.2060 1.197 1.204 0.1973 0.210 0.201
0.5 1.0670 1.067 1.066 1.4726 1.456 1.469 0.5372 0.550 0.536
0.6 1.2597 1.261 1.257 1.9199 1.893 1.914 1.1001 1.091 1.103
0.7 1.4265 1.426 1.421 2.6207 2.601 2.616 1.9810 1.925 1.996
0.8 1.5461 1.547 1.539 3.6791 3.656 3.665 3.3052 3.113 3.324
0.9 1.5913 1.593 1.587 5.2163 5.184 5.174 5.2207 4.789 5.229
1.0 1.5317 1.531 1.532 7.3587 7.339 7.294 7.9364 7.145 7.892

T∗ = 1.35

0.1 0.5793 0.580 0.575 0.7180 0.718 0.722 −0.5773 −0.575 −0.571
0.2 1.1337 1.131 1.121 0.4932 0.495 0.507 −1.0680 −1.056 −1.049
0.35 1.8363 1.822 1.839 0.3147 0.298 0.327 −1.5713 −1.556 −1.557
0.4 2.0482 2.036 2.061 0.2897 0.261 0.303 −1.6842 −1.668 −1.674
0.5 2.4957 2.487 2.510 0.3148 0.266 0.329 −1.8087 −1.765 −1.802
0.6 2.9742 2.967 2.984 0.5574 0.507 0.566 −1.6624 −1.583 −1.671
0.7 3.4504 3.440 3.461 1.2081 1.194 1.202 −1.0683 −0.944 −1.060
0.8 3.8749 3.859 3.886 2.4672 2.487 2.438 0.2681 0.283 0.274
0.9 4.1873 4.165 4.199 4.5880 4.639 4.516 2.6915 2.347 2.633
0.95 4.2804 4.253 4.290 6.0571 6.130 5.981 4.4448 3.808 4.325

The superscript bb denotes results from Ref. [26], superscript s denotes simulation data from Ref. [22], while absence of the superscript
denotes the present results calculated with the present MHNC–GvEF–BS–VW bridge function—Eq. (11)

bridge function and the new bridge function in Ref. [16]
are not the same, as pointed out in Ref. [16], the latter
has been proved to be accurate. Therefore, such com-
parison should be meaningful, not too misleading.

To further test the power of the present Eq. (11), we
carried out Grand Canonical Ensemble Monte Carlo
(GCEMC) simulations [27] at constant chemical poten-
tial µ, volume V, and temperature T, and supply new
simulation data for the βµex of the LJ fluid, the bulk state
is near the critical point for supercritical state, or is situ-
ated near the gas–liquid coexistence line for subcritical
state, simulational data for these “dangerous” regions
constitute a stringent standard for check of the Eq. (11).
The calculational results from the present Eq. (11) are
presented in Tables 4 and 5 together with the presently
new simulational data, one can see clearly out that the
same excellent accuracy as displayed in Tables 1, 2, and 3
still keeps on for these “dangerous” regions’.

To indicate the applicability of the present Eq. (11)
to other interaction potential fluids as well as the exten-
sively studied LJ fluid, we also carried out the GCEMC

simulations for a water-like core-softened potential fluid
given by

u(r) =∝ r < σ

− δε σ < r < b

− ε b < r < c.

(21)

The core-softened potential [28], although simple, has
many of the properties that characterizes water as an
anomalous fluid, and gives insight into the properties
of real water. For example, it reproduces anomalous
thermal properties that are similar to those observed
in water, and predicts liquid–liquid phase transition.
Therefore, the core-softened potential has been used
as a simple zeroth-order approximation of liquid water
[28,29]. In fact, the simplicity of the model allows us
to single out the crucial characteristic that produces
all the anomalies, without the complications introduced
by nonspherical interactions and cooperative hydrogen
bonding in real water. Therefore, simple and accurate
theoretical treatment on the core-softened potential
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Table 3 Thermodynamic
properties of the LJ fluid at
several supercritical
temperatures

The superscript bb denotes
results from Ref. [16], super-
script s denotes simulation
data from Ref. [22], while
absence of the superscript
denotes the present results
calculated with the present
MHNC–GvEF–BS–VW
bridge function—Eq. (11)

ρ∗ α(ρ∗, T∗) −s −sbb −ss βµex βµex,bb βµex,s

T∗ = 5

0.1 0.8044 0.1606 0.161 0.161 0.1246 0.125 0.129
0.3 0.8395 0.5279 0.531 0.534 0.5541 0.551 0.562
0.5 0.8397 0.9761 0.963 0.986 1.3769 1.356 1.371
0.7 0.8502 1.5152 1.491 1.532 2.8976 2.851 2.883
0.9 0.8592 2.1635 2.050 2.190 5.5967 5.450 5.582

T∗ = 2.74

0.1 0.8665 0.1877 0.188 0.189 −0.06128 −0.06 −0.056
0.3 0.8621 0.6076 0.610 0.615 0.01281 0.009 0.022
0.5 0.8474 1.1304 1.142 1.133 0.5372 0.523 0.536
0.7 0.8568 1.7865 1.796 1.801 1.9810 1.971 1.996
0.9 0.8670 2.5967 2.564 2.642 5.2207 5.155 5.229

T∗ = 1.35

0.1 1.0834 0.2835 0.285 0.282 −0.5773 −0.576 −0.571
0.35 0.9196 0.9504 0.965 0.955 −1.5713 −1.568 −1.557
0.5 0.8637 1.3720 1.402 1.379 −1.8087 −1.818 −1.802
0.7 0.8657 2.1783 2.317 2.199 −1.0683 −0.928 −1.060
0.9 0.8703 3.3112 3.454 3.316 2.6915 2.928 2.633

Table 4 Thermodynamic
properties of the LJ fluid at
near-critical temperatures

The superscript “fitting”
denotes results from Ref. [22],
superscript s denotes the
present simulation data, while
absence of the superscript
denotes the present results
calculated with the present
MHNC–GvEF–BS–VW
bridge function—Eq. (11)

ρ∗ Z Zfitting Zs βµex βµex,fitting βµex,s

T∗ = 1.39072

0.10455 0.7240 0.7277 0.725666 −0.5669 −0.5600 −0.5619
0.32961 0.3743 0.3861 0.385016 −1.4225 −1.4078 −1.4102
0.49211 0.3743 0.3881 0.390341 −1.6673 −1.6605 −1.6610
0.59980 0.6496 0.6499 0.664700 −1.5000 −1.5002 −1.4888
0.70986 1.3984 1.3889 1.389270 −0.7801 −0.7682 −0.7573
0.79642 2.5006 2.4693 2.420890 0.40321 0.4131 0.4276

T∗ = 1.32250

0.10451 0.6940 0.6984 0.6959 −0.6273 −0.6193 −0.6215
0.37794 0.2652 0.2765 0.2685 −1.7107 −1.7015 −1.7120
0.50557 0.2710 0.2870 0.29094 −1.9103 −1.9048 −1.9029
0.70374 1.1770 1.1694 1.18745 −1.1746 −1.1648 −1.1487

Table 5 Thermodynamic properties of the LJ fluid at several subcritical temperatures and near the gas–liquid coexistence line

ρ∗ Z Zfitting Zs βµex βµex,fitting βµex,s

T∗ = 1.28576

0.10340 0.6790 0.6840 0.681112 −0.6570 −0.6482 −0.65085
0.61270 0.4631 0.4722 0.491149 −1.9166 −1.9265 −1.91012

T∗ = 1.0496

0.04022 0.8069 0.8099 0.807256 −0.3878 −0.3832 −0.38661
0.68276 0.1025 0.1114 0.134102 −3.1522 −3.1417 −3.11839

T∗ = 0.8528

0.01635 0.8849 0.8865 0.8845 −0.2298 −0.2275 −0.22947
0.85606 1.6958 1.6464 1.67598 −2.8184 −2.8818 −2.84459

The superscript “fitting” denotes results from Ref. [22], superscript s denotes the present simulation data, while absence of the superscript
denotes the present results calculated with the present MHNC–GvEF–BS–VW bridge function—Eq. (11)
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Fig. 1 The reduced excess chemical potential βµex versus bulk
density ρ∗. Symbols give the present GCEMC results, the present
theoretical results at the same state with the simulation are con-
nected into a curve to guide the eye. Circles are for b/σ = 1.1,
c/σ = 1.2, T∗ = 0.83, squares are for b/σ = 1.2, c/σ = 1.5,
T∗ = 1.55, while stars are for b/σ = 1.4, c/σ = 2, T∗ = 3.38

fluid is very desirable, and will help greatly the inves-
tigation of water-like fluids.

In Figs. 1 and 2, the GCEMC simulation results for
the βµex is presented together with our theoretical cal-
culation based on the present MHNC–GvEF–BS–VW
bridge function—Eq. (11). It is clearly shown that our
formalism reproduces the simulation data very accu-
rately. Considering that we are dealing with the core-
softened potential of varying interaction range by
choosing appropriately the potential parameters, the
excellent agreement convinces one that the present
Eq. (11), when in combination with the MHNC–GvEF–
BS–VW bridge function procedure, is applicable to
short-range potential fluid as well as the long-range
potential fluid popular in simple atomic fluid. The short-
range property is usually associated with an effective
potential originating in a coarse-grained procedure in
treating complex fluids, therefore is ubiquitous in
physical systems constituted by macroparticles. The
excellent performance of the present formalism opens a
simple and accurate route for theoretically tackling on
the complex fluids.

The idea of using a local formulation of the chemi-
cal potential is in its usefulness for the construction of
the liquid–gas phase diagram. Therefore, a comparison
of the latter with existing simulation data is one of the
ultimate tests for the Eq. (11).

The liquid–gas coexistence occurs when at a given
temperature the two phases have equal chemical poten-
tials and pressures:

µg
(
ρg, T

) = µl(ρl, T) (22)

Pg
(
ρg, T

) = Pl(ρl, T). (23)
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Fig. 2 The reduced excess chemical potential βµex versus bulk
density ρ∗. Symbols give the present GCEMC results, the present
theoretical results at the same state with the simulation are con-
nected into a curve to guide the eye. Circles are for b/σ = 1.1,
c/σ = 1.2, T∗ = 0.59, squares are for b/σ = 1.2, c/σ = 1.5,
T∗ = 1.1, while stars are for b/sigma = 1.4, c/σ = 2, T∗ = 2.4
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Fig. 3 The liquid–gas coexistence diagram of the LJ fluid.
Solidline represent the results from the present formalism, while
solidcircles represent results from the NPT simulation of Lotfi
et al. (Ref. [30])

The required pressure is from the virial pressure Pv

as detailed above, the chemical potentials include an
ideal part µid and the excess part µex, the µex is cal-
culated from the present combination of the MHNC–
GvEF–BS–VW bridge function and Eq. (11), the ideal
part is given by βµid = ln

(
λ3ρ

)
with λ the thermal wave-

length. The liquid–gas coexistence densities at different
temperatures from the present formalism are plotted in
Fig. 3 together with the same obtained by Lotfi et al.
[30] from the NPT simulation. Our results show very
good agreement with the simulation data, and at low
temperatures it is almost identical with the simulation
results. Like all other OZ IET, the present one also has
convergence difficulties near the critical point; there-
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fore near-critical part of the liquid–gas coexistence curve
cannot be predicted by the OZ IE theory.

3 Concluding remarks

The key point of deriving the present Eq. (11) is the
assumption of a linear dependence of the correlation
function and bridge function on λ, i.e. B(r, λ) = λB(r)
and h(r, λ) = λh(r). When λ = 1, i.e. the full potential is
resumed, the assumption reduces to B(r, 1) = B(r) and
h(r, 1) = h(r), which are exactly the quantities employed
in the solution of the OZ IE for the full potential, there-
fore these two results are desirable. When λ = 0, i.e.
the fluid particles are free of interaction, the assump-
tion reduces to B(r, 0) = 0 and h(r, 0) = 0. For ideal gas
free of interaction, it is well known that the correlation
disappears; therefore the h(r, 0) = 0 are also desirable.
As for B(r, 0) = 0, it is also desirable since weak cor-
relation is an indication that the HNC approximation is
valid, in the HNC approximation, the bridge function
is zero. Since the linear assumption exactly satisfies for
the two limits, one can expect that the linear assumption
also should be reliable for case of 0 < λ < 1.

The linear assumption also leads to undesirable prop-
erty. Comparison of Eq. (10) with (9) immediately yields
to the fact that B1(r) = 0. As pointed out in Ref. [14],
at low densities B1(r) = 1

3 B(r), on the other hand, when
density tends to zero, the B(r) also tends to zero. There-
fore, B1(r) tends to zero when the density tends to zero.
Thus, the Eq. (10) is formally exact only in the zero-
density limit. Since one never knows the B1(r), one
cannot evaluate quantitatively the influence of the unde-
sirable property on the Eq. (10). As documented in
Table 3, the scaling parameter α(ρ∗, T∗) deviates from
1, comparison of Eq. (11) with (9) yields to the fact that
in Eq. (11), B1(r) �= 0. Therefore, from the view point
of practical use, the Eq. (11) is not in contradiction with
Eq. (9). Of course, the above qualitative analysis does
not indicate that the Eq. (11) is exact, but the compar-
ison documented in Tables 1, 2, 3, 4, and 5 and Figs. 1, 3
and 3 surely shows that the Eq. (11) is quantitatively
excellent, the absence of formal contradiction between
Eqs. (11) and (9) is also therefore quantitatively favour-
able.

What is the difference between Eqs. (11) and (9′′)?
From the view point of theoretical derivation, the
Eq. (11) originates from importing the linear assumption
into the exact Eq. (5), then scaling the bridge function
in the resultant Eq. (10). While the Eq. (9′′) originates
simply from the exact Eq. (9) and assuming that the
B1(r) can be substituted by the scaling bridge func-
tion. Although Eqs. (11) and (9′′) look very similar, they

are different structurally as detailed from our following
explanation about the origin of the superiority of the
present Eq. (11) over (9′′). For interaction potentials
consisting of a short-range steeply repulsive core and
a tail, one only can evaluate, by the predicted RDF,
the performance of any bridge function approximation,
including the presently employed MHNC approxima-
tion, outside the core, i.e. how the approximation inside
the core performs cannot be evaluated by the predicted
RDF. However, it is exactly the inside part of the bridge
function approximation that determines mainly the
βµex. Therefore, small error of the inside part of the
bridge function approximation can lead to significant
deviation of the resultant βµex from the true one. To
compensate for the inaccuracy of the bridge function
approximation, one has to scale the bridge function and
determine the scaling parameter by an exact sum rule.
However, the scaling in Eq. (9′′) is only partial, there are
two terms still unscaled. On the contrary, the scaling in
the present Eq. (11) is complete.

To conclude, we propose a local formulation for cal-
culation of the βµex only from the correlation func-
tion and bridge function of the investigated state point.
To evaluate the quality of the local formulation, we
apply it to calculate βµex and Sex and other thermo-
dynamic properties of the LJ fluid, the required cor-
relation function is from solving numerically the OZ
IE in the framework of the MHNC approximation for
the bridge function. The hard sphere bridge function
required as input of the MHNC approximation is of a
hybrid form each part of which is based on a simulation
data-fitting formula. By comparing the present predic-
tions with corresponding molecular dynamic simulation
data and Monte Carlo simulation data available in liter-
ature, and those from three previous local formulations
and one global formulation, we find that the present
local formulation is the most accurate among all exist-
ing local and global formulations. Even for the cases
where the performance of all of other local and global
formulations becomes very poor, the present Eq. (11)
still performs excellently. We also carried out GCEMC
simulations, a comparison between the present predic-
tions based on the Eq. (11) and new simulation data for
“dangerous” regions in the phase diagram gives posi-
tive results, and therefore one can confidently believe
that the present local formulation Eq. (11) is surely a
highly accurate and generally excellent approximate
formula.
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